
Paper SE04
Dynamic SAS Programming Techniques, or How NOT to Create Job Security

Steven Beakley and Suzanne McCoy
Introduction

Many SAS programmers, particularly
consultants, joke about creating job security by
creating SAS programs and applications that
require long, ongoing maintenance. In all
seriousness, though, most of us would prefer not
to have the “security” of mundane, ongoing
maintenance tasks, preferring instead to move on
to new development opportunities. However,
sometimes this is not as easy as we would like;
requirements change, data structures change,
users change. This often leaves consultants or
developers constantly making minor
modifications to “production” applications.

While certain ongoing maintenance cannot be
avoided, there are techniques that can be utilized
to help limit it. This paper will describe a
number of these techniques, including the use of
SAS metadata and dictionary tables, simple and
more advanced user input before and during
program execution, plus dynamic library and
filename referencing. The use of these and other
techniques discussed should make your
programming time more effective for your
clients or employers, and more rewarding for
yourself.

Metadata is Your Friend

Metadata is, simply put, data about your data.
Each and every SAS session has available to it a
large variety of information about the data
sources that you are using, both permanent and
temporary; the information is housed in the
SASHELP library in several views, as listed
below. These are known as “dictionary tables”.

Table I: List of Metadata Views

MLVIEW VCATALG VCOLUMN
VEXTFL VINDEX VMACRO
VMEMBER VOPTION VSACCES
VSCATLG VSLIB VSTABLE
VSTABVW VSTYLE VSVIEW
VTABLE VTITLE VVIEW

The beauty of these views lies in the fact that
they are automatically updated by the SAS
System while your session executes, so they
always reflect the most current status. Each of
them could be useful to a developer in different
situations, but there are several that will be
specifically addressed here.

VSLIB and VMEMBER identify all libraries that
are assigned in the current session. They also
provide the location of these libraries (they differ
in that VSLIB contains abbreviated information
from VMEMBER). Similarly, VEXTFL
identifies all files that have filename assignments
and provides their locations. VTABLE and
VSTABLE provide table-specific information,
while VCOLUMN provides information about
the columns in each and every table – names,
labels, formats, types, and so on. Finally,
VOPTION, VMACRO, and VINDEX provide
information about option settings, macros
defined, and indexes respectively. PROC
CONTENTS will display the contents of each of
these views and is worth reviewing; even those
familiar with them may be surprised at what a
variety of valuable information is available.

Hopefully it will be very apparent that since
dictionary tables are updated automatically,
programs can be strategically written to utilize
them and avoid a great deal of hard-coding and
modification later. The following sections
describe a couple of development scenarios
using some of dictionary tables described.

Example I: The Moving Target

This scenario is one that the authors, and
undoubtedly many other developers, have
experienced over and over. Overlapping
deadlines between departments mean that data
structures are not finalized before programmers
must begin coding reports and applications that
use the data. This means that variable names,
formats, and even their locations can change
while programming is ongoing. This of course,
can be very frustrating. But, thanks to a little
foresight and planning, use of the SAS dictionary
tables can alleviate this frustration.

Before: Hard-coded Programming

/*******************************
Program Name: SESUG.SAS
Authors: Suzanne McCoy and Steve Beakley
Purpose: Display some dynamic

 programming techniques.
Revision History:
01Jun2003 - Initial program.
*******************************/
Libname a 'c:\sesug\a';

data class;
 set a.class;
 where age <= 12;
run;

A simple program, but suddenly, on June 2, it
doesn’t run anymore. The dataset is no longer
available, though the owner swears it is. As it
turns out, the dataset has been moved, and is
moved subsequent to that as well. Therefore,
constant modification to the code is required.

Here is where the dictionary tables can help out.
Assume that the dataset could be in one of 4
possible SAS libraries assigned at startup.
Further assume that the dataset is named CLASS
or CLASSES.

After: Dynamic Programming

/*******************************
Program Name: SESUG.SAS
Authors: Suzanne McCoy and Steve Beakley
Purpose: To display some dynamic
 programming techniques.
Revision History:
01Jun2003 - Initial program.
02Jun2003 - Assign libname dynamically.
*******************************/
Libname a 'c:\sesug\a';
Libname b 'c:\sesug\b';
Libname c 'c:\sesug\c';
Libname d 'c:\sesug\d';

data _null_;
 set sashelp.vmember
 (keep=libname memname path);
 where upcase(memname) like 'CLASS%' and
 libname not in
('WORK','MAPS','SASHELP');
 call symput('path',left(trim(path)));
run;

libname mylib "&path";

The modified program utilized the VMEMBER
dictionary table to identify the path of the library
that contains the dataset being sought. Then a
macro variable is created which contains that
path. If a dataset of the same name appears in
more than one directory, only the last one found
in the search path will be used. Finally, a new
libname statement is issued to the path.

Obviously, this example is very basic and serves
to illustrate one of the ways to use the dictionary
tables. The next example is much more
complicated, and differs from the first in another
significant factor. The SAS dictionary tables
that have been referenced thus far are actually
views to SQL dictionary tables with similar, but
not quite identical, names. This example will
illustrate using the dictionary tables through
PROC SQL rather than datastep language.
Either method can achieve the same result, but
do be aware that naming differences do exist. If

using Proc SQL, libname ‘DICTIONARY’ is
automatically assigned. The members associated
with the dictionary libname are show below.

Table II: SQL Dictionary Tables

CATALOGS MEMBERS
COLUMNS OPTIONS
EXTFILES TABLES
INDEXES TITLES
MACROS VIEWS

Example 2: Dynamic Macro Variable
Assignments

This scenario starts from a WebAF application
screen used for data entry. The values entered
on the screen need to be dynamically passed
from the data entry screen, though some java
processing, and then be loaded into the master
dataset via macro variables. This can be
implemented dynamically using dictionary tables
so that the code would not have to change
if/when variables were added to or removed from
the dataset.

Step 1 – determine which variables exist in the
work dataset. Create a dataset of the variable
names and a macro variable that contains the list
of variable names.

proc sql noprint noerrorstop;
 create table work.varnames as
 select upcase(name) as name
 from dictionary.columns
 where libname=upcase("&lib")
 and memname=upcase("&dsname")
 order by name;

 select name
 into:listofvars separated by ' '
 from work.varnames;
 quit;

Step 2 – the variables are going to be used
multiple ways, so they are made global to the
application.

%global &listofvars;

Step 3 – Create the macro variables that contain
the names of the macro variables to be created
and populated. Also create a macro variable that
contains the number of macro variables created.

 data _null_;
 set work.varnames end=eof;
 call symput
 (compress('varname'||put(_n_,best.))
 ,compress(name));
 if eof then
 call symput
 ('numofvars',compress(put(_n_,best.)));
 run;

Step 4 – Populate the macro variables with the
value captured from the work dataset underlying
the data entry screen. Note that the macro
variable has the same name as the data set
variable.

 data _null_;
 set &lib..&dsname (obs=1);
 %do i=1 %to &numofvars;
 call symput
 ("&&varname&i",&&varname&i);
 %end;
 run;

Your Input is Desired

Another source of numerous modifications to
programs, and a significant security threat, is the
hardcoding of usernames and passwords into
program code. Oracle and other DBMS
libnames, as well as SPDS libnames, require a
username and password before connecting to the
data source. An option on the libname statement,
DBPROMPT, can be assigned with a value of
YES to prompt the user to enter the username
and password values. However, a limitation of
this is when the session is not an interactive
session; for example, a remote session on a Unix
server established through SAS/CONNECT from
a Windows workstation. (a session initiated
through SAS/IntrNet or WebAF would also
behave similarly). Of course, a user input
application can be developed using SAS/AF,
SAS/IntrNet, or AppDev Studio, but what if only
Base SAS is available? Fortunately, the SAS
Macro Facility provides a solution with
%WINDOW and %DISPLAY. The example
presented in Appendix A will illustrate their use.
Also notice that it includes yet another example
of using dictionary tables.

Compile Source Code – Preparation for
Production Deployment

In many ‘production’ environments, only
compiled source code is deployed. The
methodology shown here was used to compile
SAS programs from a dedicated directory into a
SAS catalog. This example is from a Windows
NT platform.

*dir is the location of the programs;
%let dir='dir "pathto\macroSource';

*avoid quoting issues that will come into
play on filename statements;
%let srcdir = pathto\macroSource\;

*define location and options for the
compiled code;
libname macrosrc 'pathto\macroSource';
options mstored sasmstore=macrosrc;

/*---------------------------------------
Requirements for successful use of this
methodology:
1. Programs in the directory must be
named "program_name.sas"
2. The macro within the program must
have the same name as the SAS program
3. The macro definition line must
have a option to store (e.g., %macro
program_name /store;
4. Program names cannot contain
blanks
---------------------------------------*/

filename programs pipe &dir; *pipe
executes when the filename is used;

*create a dataset from the directory
listing produced by the pipe;
data dirlist;
 infile programs missover pad;
 input name $100.;
run;

*keep only items in the directory listing
that end with '.sas';
data programs(drop=name);
 set dirlist;
 if scan(name,-1,'.') = 'sas';
 program_name=scan(name,-1,' '); *no
blanks allowed in the names;
run;

*turn the program names into macro
variables;
data _null_;
 set programs end=eof;
 call
symput(compress('prog'||put(_n_,best.)),p
rogram_name);
 if eof then call
symput('nobs',compress(put(_n_,best.)));
*create counter variable &nobs;
run;

%macro compile_macros;
 %do i=1 %to &nobs;
 filename thisfl&i "&srcdir&&prog&i";
 %include thisfl&i;
 %end;
%mend compile_macros;
%compile_macros; *execute the compile;

Conclusion

There never seems to be a lack of SAS
challenges for developers on any given project.
The way to grow and broaden experience is by
freeing up time that one might otherwise spend
performing ongoing maintenance or other
repetitive tasks. The goal of this paper and
presentation has been to expose developers of all
levels to techniques and ideas for more dynamic,
less “hands-on” programming, creating
applications and programs that can be turned
over to less experienced programmers or even
non-programmers for future maintenance. Other,
non-programmatic tools can aid in achieving
this, like spreadsheets or text files that serve as
“drivers” or “control files” for SAS applications.
The primary motivator to a developer should be
to provide better and better applications, thereby
creating the RIGHT kind of job security!

Author Information

Steve Beakley is a SAS V8 Certified
Professional with over 15 years SAS experience.
His experience has included implementation,
development and maintenance of SAS-related
projects in a number of industries including
airlines, medical software and services, energy,
and retail. He has served as an officer for the
Kansas City Area SAS Users Group, has twice
been a SUGI presenter, and was an invited
presenter at a SAS Executive Conference. Steve
can be reached at his home office at (954) 565-
8817, or via email at sbeakley@bellsouth.net.

Suzanne McCoy is a SAS Certified Advanced
Programmer with more than 16 years of SAS
experience. She is a co-owner and principle of
Lucid Analytics Corp., a SAS Silver Alliance
Partner and the founder and contact person for
the Wilmington, NC area SAS Users Group.
Suzanne can be reached via email at
smccoy@lucid-analytics.com.

Appendix A: %WINDOW/%DISPLAY Example

**
* *
* LOGON.SAS *
* *
* This program prompts a user upon starting a SAS session *
* for username and password for connections to DB2, *
* Oracle, and SPDS. It then makes the remote connection *
* to Unix and, if necessary, an MVS host (DB2), passes *
* the usernames and passwords supplied, and sets up the *
* libnames. Once return is controlled to the local *
* session, the libraries that have been defined remotely *
* are defined in the local session as well. *
* *
* Created 2/18/2003 by Steven Beakley. *
* *
**;

* Turn off source so that no passwords are passed to the log.;

options nosource;

* Initialize all the username/passwords to blank before starting.;

%let unxusr = ;
%let unxpwd = ;
%let hstusr = ;
%let hstpwd = ;
%let orausr = ;
%let orapwd = ;
%let spdusr = ;
%let spdpwd = ;

* Display the window that prompts for the various usernames and
 passwords. If the user provides any of the inputs they are
 passed as macro variables to the remainder of the program.;

%window welcome color=white
 #2 @26 'Welcome to SAS/Enterprise Miner!' color=green attr=rev_video
 #5 @10 "Enter your Unix username and password here: (REQUIRED)" color=red
 #7 @22 "UNIX:" color=red +2 unxusr 8 color=red required=yes attr=rev_video autoskip=yes
 +2 unxpwd 24 display=no required=yes color=red attr=rev_video
 #11 @12 "If you need to establish a connection to the MVS host,"
 #12 @23 "enter your username and password here:"
 #14 @22 "HOST:" color=blue +2 hstusr 8 color=blue attr=rev_video autoskip=yes
 +2 hstpwd 24 display=no color=blue attr=rev_video
 #18 @15 "If you need to establish a connection to Oracle,"
 #19 @23 "enter your username and password here:"
 #21 @20 "ORACLE:" color=blue +2 orausr 8 color=blue attr=rev_video autoskip=yes
 +2 orapwd 24 display=no color=blue attr=rev_video
 #25 @21 "If you need to establish a connection to SPDS,"
 #26 @23 "enter your username and password here:"
 #28 @22 "SPDS:" color=blue +2 spdusr 8 color=blue attr=rev_video autoskip=yes
 +2 spdpwd 24 display=no color=blue attr=rev_video
 #31 @31 'Press ENTER to continue.' color=green attr=rev_video;
%display welcome;

* Remote connection established to the Unix box.;

%let sasunix=remote.unixserver.com;
options comamid=TCP remote=sasunix;
filename rlink 'c:\program files\sas institute\sas\v8\connect\saslink\tcpsasunix.scr';
signon sasunix;

* Create the needed macro variables on the remote session.;

%macro passuser;
%syslput unxusr=&unxusr;
%syslput unxpwd=&unxpwd;
%syslput hstusr=&hstusr;

%syslput hstpwd=&hstpwd;
%syslput orausr=&orausr;
%syslput orapwd=&orapwd;
%syslput spdusr=&spdusr;
%syslput spdpwd=&spdpwd;
%mend passuser;
%passuser;

rsubmit sasunix;

%* Turn off source so that no passwords are passed
 to the log from the Unix session.;

options nosource;

%macro conx;

%* An MVS host session is initiated if requested, the DB2 library is
 defined remotely, and then passed back to the Unix session.;

%if "&hstusr" ^= "" %then %do;
signon mvs.server noscript user=&hstusr PW="&hstpwd";
rsubmit mvs.server;

libname mvsdb2 db2 ssid=mvsssid schema=db2schema;

endrsubmit;

libname mvsdb2 slibref=mvsdb2 server=mvs.server;
%end;

%* The SPDS library is defined if requested.;

%if "&spdusr" ^= "" %then %do;
libname dw sasspds "_prg" host="sasunix" serv="9999" user="&spdusr" passwd="&spdpwd" unixdomain=yes netcomp=no;
%end;

%* The Oracle library is defined if requested.;

%if "&orausr" ^= "" %then %do;
libname unxora oracle user="&orausr" pass="&orapwd" path="unxora" schema="orschema";
%end;
%mend conx;
%conx;

* Clear macro variables with the passwords defined.;

%let unxpwd = ;
%let hstpwd = ;
%let orapwd = ;
%let spdpwd = ;

* Turn on source for subsequent user requests.;

options source;

endrsubmit;

* Establish local references to saswork, sasuser, and sashelp defined remotely (call them rmtwork and rmtuser).;

libname rmtwork slibref=work server=sasux101;
libname rmtuser slibref=sasuser server=sasux101;
libname rmthelp slibref=sashelp server=sasux101;

* Establish local references to each of the other libraries defined remotely.;

%macro loclibs;

data _null_;
 set rmthelp.vslib end=eof;
 where upcase(libname) ^in
('MAPS','SASHELP','SASUSER','WORK','RMTWORK','RMTUSER','RMTHELP','SASCATCA','SASADMIN','RPOSMGR');
 num+1;

 call symput ('lib'||left(trim(num)),left(trim(libname)));
 if eof then call symput('num',num);
run;

%do i=1 %to #
libname &&lib&i slibref=&&lib&i server=sasunix;
%end;

* Deassign rmthelp, we are done with it now.;

libname rmthelp clear;

%mend loclibs;
%loclibs;

* Clear macro variables with the passwords defined.;

%let unxpwd = ;
%let hstpwd = ;
%let orapwd = ;
%let spdpwd = ;

* Turn on source for subsequent user requests.;

options source;

* Logon.sas complete;

